1. Increased warming
Assuming continued growth in world greenhouse gas emissions, the primary climate models used in this Assessment project that temperatures in the US will rise 5-9°F (3-5ºC) on average in the next 100 years. A wider range of outcomes is possible.

2. Differing regional impacts
Climate change will vary widely across the US. Temperature increases will vary somewhat from one region to the next. Heavy and extreme precipitation events are likely to become more frequent, yet some regions will get drier. The potential impacts of climate change will also vary widely across the nation.

3. Vulnerable ecosystems
Many ecosystems are highly vulnerable to the projected rate and magnitude of climate change. A few, such as alpine meadows in the Rocky Mountains and some barrier islands, are likely to disappear entirely in some areas. Others, such as forests of the Southeast, are likely to experience major species shifts or break up into a mosaic of grasslands, woodlands, and forests. The goods and services lost through the disappearance or fragmentation of certain ecosystems are likely to be costly or impossible to replace.

4. Widespread water concerns
Water is an issue in every region, but the nature of the vulnerabilities varies. Drought is an important concern in every region. Floods and water quality are concerns in many regions. Snowpack changes are especially important in the West, Pacific Northwest, and Alaska.

5. Secure food supply
At the national level, the agriculture sector is likely to be able to adapt to climate change. Overall, US crop productivity is very likely to increase over the next few decades, but the gains will not be uniform across the nation. Falling prices and competitive pressures are very likely to stress some farmers, while benefiting consumers.

6. Near-term increase in forest growth
Forest productivity is likely to increase over the next several decades in some areas as trees respond to higher carbon dioxide levels. Over the longer term, changes in larger-scale processes such as fire, insects, droughts, and disease will possibly decrease forest productivity. In addition, climate change is likely to cause long-term shifts in forest species, such as sugar maples moving north out of the US.

7. Increased damage in coastal and permafrost areas
Climate change and the resulting rise in sea level are likely to exacerbate threats to buildings, roads, powerlines, and other infrastructure in climatically sensitive places. For example, infrastructure damage is related to permafrost melting in Alaska, and to sea-level rise and storm surge in low-lying coastal areas.

8. Adaptation determines health outcomes
A range of negative health impacts is possible from climate change, but adaptation is likely to help protect much of the US population. Maintaining our nation's public health and community infrastructure, from water treatment systems to emergency shelters, will be important for minimizing the impacts of waterborne diseases, heat stress, air pollution, extreme weather events, and diseases transmitted by insects, ticks, and rodents.

9. Other stresses magnified by climate change
Climate change will very likely magnify the cumulative impacts of other stresses, such as air and water pollution and habitat destruction due to human development patterns. For some systems, such as coral reefs, the combined effects of climate change and other stresses are very likely to exceed a critical threshold, bringing large, possibly irreversible impacts.

10. Uncertainties remain and surprises are expected
Significant uncertainties remain in the science underlying regional climate changes and their impacts. Further research would improve understanding and our ability to project societal and ecosystem impacts, and provide the public with additional useful information about options for adaptation. However, it is likely that some aspects and impacts of climate change will be totally unanticipated as complex systems respond to ongoing climate change in unforeseeable ways.